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Toward stable 3D numerical evolutions of black-hole spacetimes
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Three dimensional3D) numerical evolutions of static black holes with excision are presented. These
evolutions extend to about 800 whereM is the mass of the black hole. This degree of stability is achieved
by using growth-rate estimates to guide the fine tuning of the parameters in a multiparameter family of
symmetric hyperbolic representations of the Einstein evolution equations. These evolutions were performed
using a fixed gauge in order to separate the intrinsic stability of the evolution equations from the effects of
stability-enhancing gauge choices.
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Recent studies have documented the fact that constraintion and add multiples of the constraints to the evolution

violating instabilities are a commdif not universa) feature equations, and seven additional parameferk,a,b,c,d,e}

of solutions to the Einstein evolution equatidis-3]. Initial  that redefine the set of dynamical fields. The details of the
data with small numerical errors on some initial Cauchy surtesulting evolution equations and the precise definitions of
face will typically evolve to a solution in which the con- these various parameters are explained at length elsewhere
straints grow exponentially with time. Black-hole spacetimeq 1,3], and will not be repeated here. It has been shown that a
that are evolved in full 30without symmetry with a fixed  9-parameter subfamily of these representations consists of
gauge using one of the “standard” formulations of the evo-strongly hyperbolic evolution equations in which all of the
lution equationge.g. Arnowitt-Deser-MisnefADM) [4,5] or  characteristic speeds of the systefnelative to the
Baumgarte-Shapiro-Shibata-NakamuSSN [6,7]] have  hypersurface-normal observetsave only the physical val-
instabilities of this type that become unphysi@@ly. because ues:{0,+1} [1]. It has also been shown that the evolution
the constraints become lajgen a time scale of about 180  equations for an open subset of this 9-parameter family, in
[8.,9], whereM is the mass of the black hole. Several studiesparticular those representations with3</<0, are sym-
have shown that changing the evolution equations by addinghetric hyperbolic[3]. Our numerical analysis here is con-
multiples of the constraints and by changing the dynamicafined to this 9-parameter family of symmetric hyperbolic

2
+r2dQ% (D)

fields can have a significant effect on the growth rate of thesgepresentations of the Einstein evolution equations having
constraint-violating instabilitieg1 —3]. Such a reformulation physical characteristic speeds.
of the BSSN evolution equations has allowed full 3D evolu- Here we analyze the numerical evolution of initial data
tions with fixed gauge to persist for about 140010]. The  that represents a single isolated static black hole. For initial
duration of black hole evolutions has also been extendedata we use &= constant slice of the Schwarzschild geom-
considerably, apparently indefinitely in some cases, by imetry written in PainleveGullstrand coordinatefl 3],
posing symmetries, e.g. octant, on the solutiptl or by
using an appropriate dynamical gau@sl12]. M

We present new results for evolving isolated static black d?= —dt2+ | dr+ \/=—dt
holes using a multiparameter family of symmetric hyperbolic r
representations of the Einstein evolution equatifhis For
the optimal case our evolutions extend to about 8000Ve  (whered? is the standard metric on the unit sphenglus
focus on the question of how the evolution equations themsmall perturbations that are added by hand. By explicitly
selves affect stability, and therefore we use a fixed gaugaserting the same perturbations for all numerical resolu-
[20] and do not impose any symmetries on the solutions. Théons, we are able to test convergence; this would not be the
fine tuning needed to achieve optimal stability for evolving acase if instead we allowed the perturbations to arise from
single black hole requires a special choice of the parametersachine roundoff error. The exact form of the perturbations
in our representation of the evolution equations, but does nas unimportant; it does not affect either the asymptotic
require any fine tuning of our numerical methods. Thus wegrowth rate of the unstable mode or its spatial dependence.
expect that any numerically stable evolution code that solves We also fix the gauge for these evolutiom®t just at the
this same system of equations with the same initial data anuhitial time but throughout the evolutiorby setting the den-
boundary conditions will exhibit the same behavior we findsitized lapse and the shift to those of E@G). Fixing the
here. gauge in this way is known to be less stable than using a

We study the evolution of black-hole spacetimes using aarefully selected dynamically determined ga{@®]. How-
particular 12-parameter family of representations of the Einever, our purpose here is to study the intrinsic stability of the
stein evolution equationfd]. This family is derived from the evolution equations, so we choose to fix the gauge in this
standard 31 “ADM” form of the equations by introducing nonoptimal way in order to isolate and emphasize this insta-
five parameterdy,{,n,x,0} that densitize the lapse func- bility.
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FIG. 2. Solid curve shows the evolution of the integral norm of
all the constraint§Cy;;C*" + CC ¥+ Cyi; C ¥ + C 3|2 (per unit vol-
4ime for the most stable set of evolution parameters. Dotted curves
show the individual contributions from the various constraints:
CiiiCM, CijCM, ¢ C* andC? (in that order from largest to small-

The evolution equations are solved here using a pselest at late times
dospectral collocation methadee[1,14,13 for further de-
tails on the implementatigron a 3D spherical shell extend- Figure 2 shows the evolution of the integral norm of the
ing (typically) from r=1.9M to r=11.9M. This code constraints(see Refs[1,3] for definitions of the constraint
utilizes the method of lines; the time integration is performedvariables for the highest-resolution case shown in Fig. 1.
using a fourth-order Runge-Kutta algorithm. Although we Note that at late times, most of the constraints in Fig. 2 grow
use spherical coordinates, our fundamental variables are thg the same rate (2% 1/275\) as the energy norm shown in
Cartesian components of the various fields. The inner boundzig. 1. The exception is the Hamiltonian constraint, which is
ary lies inside the event horizon; at this boundary all themuch smaller than the other constraints, but grows at double
characteristic curves are directed out of the dont@ito the  the growth rate, Z/~1/13™. Thus it appears that for the
black holg, so no boundary condition is required there andoptimal choice of parameters, the unstable mode violates the
none is imposed‘horizon excision”). At the outer boundary Hamiltonian constraint only to second order in the mode
we require that all ingoing characteristic fields be time-amplitude.
independent, but we allow all outgoing characteristic fields Gjven a numerical evolution for a particular set of param-
to propagate freely. eters, we determine the exponential growth rate by measur-

Recent analytical wor{3] has shown that the growth ing the slope of the curve in Figs. 1 or 2. Figures 3 and 4
rates of the constraint-violating instabilities for the Painteve illustrate these growth rates as functions of the param@ters
Gullstrand form of the Schwarzschild geometry depend o435 The points in these figures represent numerically de-

just three of the nine parameters that specify the evolutioe mineq growth rates measured using the linearized code
equations{y,{,z}. We confine our study here to the depen-(which yields the same growth rates as the fully nonlinear
dence of this instability on the two parametérgz} [21],  code; see Fig. 1 and RdB]). The solid curves represent the
and we fix the remaining parameters to the values that definemplea priori estimates of these growth rates introduced in
system IIl of Ref[1]. Ref.[3]. Although the agreement between the estimates and
Figure 1 shows numerical results from the evolution of athe numerical results is only approximate, this agreement
single black hole for the casg=—12, 7= —0.425. Plotted Was good enough to allow us to direct our search for the
is the energy norMi6E[ Y2 (as introduced in Ref3]), which ~ most stable values of the parameters to the relevant region of
measures the deviation of the numerical solution from arthe parameter space. The curves in these figures represent
exact solution that satisfies the constraints. The solid curves
in Fig. 1 represent computations performed at different spec-
tral resolutiong18, 24, and 32 radial collocation pointand
thus illustrate the convergence of our solutions. The dashed
curve represents the evolution obtained with a linearized ver-
sion of the code, normalized so that the amplitude of the
unstable mode is the same as that obtained with the nonlinear

FIG. 1. Energy norrSE|*? (per unit volume for the most
stable set of evolution parameters. Solid curves|pSE|| Y2 from
the full nonlinear evolution code, and the dashed curve is from
linearized version of the code.

evolution. The convergence of these solutions, as illustrated 10°r :

in Fig. 1, is made possible by choosing the same initial data, B ‘ ‘ ‘ ‘

including the exact same form for the initial perturbation W08 06,04 02 0

added by hand to Eql), for each resolution. If we had §

instead chosen initial data given by E@.) plus random FIG. 3. Exponential growth rates of the constraint-violating in-

perturbationgeither supplied by numerical roundoff error or stabilities as a function of the parametekwith fixed y=—12).
introduced by handwe would not expect results using dif- Points are numerically determined rates, while the solid curve is the
ferent resolutions to converge to the same solution. approximate growth rate.
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FIG. 4. Exponential growth rates of the constraint-violating in-  FIG. 5. Instability growth rates as a function of the location of
stabilities as a function of the parameter (with fixed z the outer boundary of the computational domain for the evolution
=—0.425). Points are numerically determined rates, while the soliparameter valuey= — 12, z= —0.425.
curve is the approximate growth rate.

for r.c>20M, the growth rate for a fixed set of evolution
orthogonal slices of the function 4(ly,z) through its mini- Parameters decreases roughly likér 5, with the constant

mum, 1k=1/275M, which occurs at the parameter values A eing about a factor of six larger for the case with,
y=—12 andz= —0.425. This minimum growth rate is such >20M. However, theoptimal value of 1/ as a function of

that constraint violations in the initial data that are compa-rmax does not scale in this simple way. The smallest growth

rable to typical machine precisicie.g. 10 %) will become ~'at€ determined in our study to date is the poinyat—12
large (e.g. of order 0.1 whent~10*M. Figures 1 and 2 and z=—0.425 with r,~=201.0M, where we find 1
illustrate the full nonlinear evolution that corresponds to this=1/57QM. This evolution would be expected to persist for
optimal choice of parameters. over 16 000/. _ . _

For all the cases discussed so far, the outer boundary ra- Finally, we note that all of the numerical evolutions dIS-
dius was set at,,—11.9M. Figure 5 illustrates the depen- cussed so far have placed timmer boundary of the domain
dence of the growth rate 4/on the location of the outer atTmn=1.9M. We have also run the code witly,=1.0M
boundary of our computational domain, for fixgd=—12 and r,=1.5M for our best-studied caseyE—127
andz=—0.425. This curve shows a sharp local minimum at= —0.425( 5,=11.9M) and we find that the growth rate is
the radius where the optimal set of evolution parameteréhe same to three significant digits.

{y,i} was determined, strongly suggesting that these optimal In summary, wg'have |IIustrqted that S|gn|f|cant Improve-
values depend on the location of this outer boundary. Wi ents in the stability of numerical evolutions of 3D black-

have verified this by studying in some detail the case wherd®!€ Spacetimes can be achieved by a careful choice of the
the outer boundary is located at, ~81.9v. There we find representation of the Einstein evolution equations. In particu-

that the new optimal values of the parameters became lar we have shown that single bIack_ hoI_e spacetimes can be
- evolved longer thah~8000M even with fixed gauge. These
=—12 andz=—0.41, and the value of the growth rate at

h imal b /33 hi new results also indicate that the outer boundary conditions
these new optimal parameters becomes=1l/333M. This 5y hiay 4 significant role in fixing the optimal formulation

growth rate is about 20% smaller than that of the systemy e equations, as has been suggested by other investiga-
whose evolution is illustrated in Fig. 1. Thus we infer that(L

) : 2 ions[16—19. The role of these boundary conditions will be
the evolution of a single black hole in th|§ case would exten xplored more thoroughly in a future study.
to about 10M. We also note that the optimal parameters for
rmax— 81.9M give a value of 1# that is about 2/3 the value Some computations were performed on the 1A-32 Linux
illustrated in Fig. 5 for this value of 5. Considerable ad- cluster at NCSA. This research was supported in part by NSF
ditional computational effort will be required to determine grant PHY-0099568 and NASA grant NAG5-10707 at Cali-
the general dependence of the optimal value efdiir,,,,  fornia Institute of Technology and NSF grants PHY-9800737
and we postpone that to a future study. FpE,<12M and and PHY-9900672 at Cornell University.
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